llm_replicate_api#
- class besser.agent.nlp.llm.llm_replicate_api.LLMReplicate(agent, name, parameters, num_previous_messages=1, global_context=None)[source]#
Bases:
LLM
An LLM wrapper for Replicate’s LLMs through its API.
- Parameters:
agent (Agent) – the agent the LLM belongs to
name (str) – the LLM name
parameters (dict) – the LLM parameters
num_previous_messages (int) – for the chat functionality, the number of previous messages of the conversation to add to the prompt context (must be > 0)
global_context (str) – the global context to be provided to the LLM for each request
- _nlp_engine#
the NLPEngine that handles the NLP processes of the agent the LLM belongs to
- Type:
- num_previous_messages#
for the chat functionality, the number of previous messages of the conversation to add to the prompt context (must be > 0)
- Type:
- _abc_impl = <_abc._abc_data object>#
- intent_classification(intent_classifier, message, parameters=None)[source]#
Predict the intent of a given message.
Instead of returning only the intent with the highest likelihood, return all predictions. Predictions include not only the intent scores but other information extracted from the message.
- Parameters:
intent_classifier (LLMIntentClassifier) – the intent classifier that is running the intent classification process
message (str) – the message to predict the intent
parameters (dict) – the LLM parameters. If none is provided, the RAG’s default value will be used
- Returns:
the list of predictions made by the LLM.
- Return type:
- predict(message, parameters=None, session=None, system_message=None)[source]#
Make a prediction, i.e., generate an output.
- Parameters:
message (Any) – the LLM input text
session (Session) – the ongoing session, can be None if no context needs to be applied
parameters (dict) – the LLM parameters to use in the prediction. If none is provided, the default LLM parameters will be used
system_message (str) – system message to give high priority context to the LLM
- Returns:
the LLM output
- Return type: